

www.polymics.com

INJECTION MOLDING

Injection molding is an important manufacturing process for thermoplastics to create precision parts and components. Typically designer would use stock shapes from other processes for early prototyping and then use injection molding to validating mass production feasibility. However, tooling cost and turn around time would be usually prohibitive to use this process for high performance or specialty polymers due to volume limitation. Furthermore, prototype tooling often produces inferior parts with knead or flow lines that may not be a good predictor of actual production part performance.

Polymics[®] has combined material and process technologies to bring unmatched value to market. Our comprehensive injection molded product portfolio provides customers with cost effective choices to obtain critical application properties in shape form.

TYPICAL PROPERTY VARIATIONS BY PROCESS

ADVANTAGES OF POLYMICS INJ

WIDE RANGE OF STANDARD TOOLING FOR VARIOUS APPLICATIONS

PRODUCTION QUALITY SHAPES AT PROTOTYPING QUANTITY

OPTIMIZED FROM PROTOTYPE TO PRODUCTION

FLEXIBLE GATE DESIGN TO MATCH APPLICATION REQUIREMENTS

COMPREHENSIVE PORTFOLIO OF HIGH PERFORMANCE POLYMERS, ALLOYS AND THEIR SPECIALTY COMPOUNDS.

DESIGN EXPERIENCE IN WIDE RANGE OF **APPLICATIONS FROM SEAL & RINGS IN FLUID** HANDLING COMPONENTS TO COMPONENTS IN SEMI-CONDUCTOR INDUSTRY.

A Based on unfilled PEEK, processed by listed process mentioned in machine direction.

POLYMICS' STANDARD THERMOPLASTIC SIZES / SHAPES

POLYKETONES	Pyramid™ PEEK	Unfilled, Glass-Filled, Carbon-Filled, Wear Grade, and Specialty Formulations PEEK
	PEK	High glass transition temperature and Melting Temperature semi crystalline Material, Unfilled, Glass-Filled, and Carbon-Filled PEK
	PEKEKK	High Performance Thermoplastic semi crystalline Material, Unfilled, Glass-Filled, and Carbon-Filled PEKEEK
Arylmax® IA	IA-850	High Temperature Polyetherketoneketone Blend Machinability PI. Unfilled, Glass-Filled, Carbon-Fiber, and Self-Lubricating Blends
	IA-870	High Temperature Polyetherketoneketone Blend Machinability PBI. Unfilled, Glass-Filled, Carbon-Fiber, and Self-Lubricating Blends
Trion®	PAI	PAI Combines The Exceptional Performance Of Thermoset Polyimides With The Melt-processing Advantage Of Thermoplastics. Unfilled, Glass-Filled, Carbon-Filled, and Wear Grade PAI
Other	Pyramid™ PPS	Unfilled, Glass-Filled, and Wear Grade PPS
	PEI	Unfilled, ESD, and Carbon-Filled PEI
	Pyramid™ PPSU	Unfilled, Glass-Filled, and Carbon-Filled PPSU

& We have a wide range of material capability; contact us for other material or special requests.

POLYMICS' STANDARD THERMOPLASTIC SIZES / SHAPES

	Outer Diameters (OD) from 1.0" t	
TUBES	Outer Diameters (OD) from 2.0" t	
TUBES	Outer Diameters (OD) from 7.25"	
	Outer Diameters (OD) from 10.0"	
RODS	Diameters from 0.25" to 0.75" in I	
PLATE	4"x4", Thickness from 0.125" to 0	
	12"x6" (300x150mm), Thickness f	
DISCS	Outer Diameters (OD) from 1.75"	
	Outer Diameters 1 (OD1) from 2.0	
	Outer Diameters 2 (OD2) from 1.1	
ROLLER	Inner Diameters (ID) from 0.63" t	
NOLLER	Height 1 from 0.24" to 0.55"	
	Height 2 from 0.16" to 0.55"	

🔈 Size and shape capabilities of individual materials may vary. Contact Polymics, Ltd. for details. Custom materials/sizes also available

TYPICAL APPLICATION OF POLYMICS INJECTION MOLDED PRODUCT LINE

PRODUCT APPLICATION	MARKET
SEAL & BACK UP RINGS	Oil & Gas
COMPRESSOR VALVE	Industrial
BUSHING & WEAR PLATE	Industrial
ROLLER & FIXTURE	LCD
TEST SOCKETS & HANDLING COMPONENTS	Semiconductor
SPINAL CAGE & SCREWS	Medical

le CCM and DF products available upon request.

SUMMARY

bring additional value to our customer/partners.

INJECTION MOLDING

to 2.0" in Length of 6.0" with Wall Thicknesses up to 0.5" to 7.0" in Length of 6.0" with Wall Thicknesses up to 0.625" ' to 10.0" in Length of 4.0" with Wall Thicknesses up to 0.625" ' to 15.25" in Length of 2.0" with Wall Thicknesses up to 1.0"

Lengths of 10"

0.5″ from 0.125" to 0.375"

" to 13.0" with a Wall Thickness of 0.24"

05" to 2.76" 10" to 1.42" to 1.06"

Polymics® injection molded product line provides a wide range of stock shapes and unique near net shape that is used in as test socket feed stock in BiTS markets, as seal & ring feed stock in oil and gas markets, as specialty compressor plates and valve components. It also provides a cost effective solution with superior properties when comparing to traditional machined components, in prototyping or in production. We continue to cover more tooling sizes to better service customers by reducing material cost, machining time and part stress.

Our continuing Green initiatives include a scrap buyback program to eliminate landfilling and